
Make Crypto Safe Again!

Detecting Bugs in API Usage Using Bounded Model Checking

Matheus V. X. Ferreira Malte Möser

1 Introduction

The codebases of many popular cryptographic libraries are the result of decades of
development and incremental changes. OpenSSL for example, arguably the most important
crypto library available today, has been around since 1998 [6]. As a result, the libraries’
application programming interfaces (APIs) have been continuously adapted and changed,
often increasing their complexity and making them harder to use correctly.

Correct API usage is especially important in the context of information security,
because neglecting even minor details can lead to a complete break of the security the
protocol is intended to provide (cf. [2]). With OpenSSL, mistakes such as ignoring a
single return statement have been observed to be able to lead to a complete breach in
confidentiality [3].

A recent line of academic work has applied model checking techniques to discover API
misuse (cf. [3, 8]). In this context, the goal of this project is to evaluate the feasibility of
using Bounded Model Checking techniques (in particular, the Bounded Model Checker
CBMC [1]) to validate correct API usage. For this, we will develop property monitors
that allow to check that programs follow a correct sequence of API calls.

The remainder of this report is structured as follows. Section 2 presents the necessary
background on the validation of SSL certificates. Section 3 explains how we can use
property monitors in combination with a Bounded Model Checker such as CBMC to
validate correct API usage, and Section 4 shows the concrete validation we perform for
OpenSSL. Section 5 presents some examples of applying our property models and discusses
the limitations of this approach. Finally, Section 6 concludes the report.

2 SSL Certificate Validation

Transport Layer Security (TLS) and its precursor Secure Socket Layer (SSL) are protocols
enabling secure communication on the Internet. They are designed to resist active and
passive attacks and to achieve the following three protection goals. First, end-to-end
encryption between client and server ensures confidentiality of the communication contents.
Second, message authentication ensures integrity of the communication contents, which
means that modifications of the content can be detected. Third, a public-key infrastructure
allows to authenticate the communication partners to prevent a malicious man-in-the-
middle attacker from impersonating the counterparty. In modern application, be it reading

1

User mywebsite.com

attacker.com

Intermediary CA

Root CA

sign

sign

sign

GET mywebsite.com

Fig. 1: Chain-of-trust and hostname verification (the user needs to verify the hostname
and the signature highlighted in green)

your emails on Gmail or uploading pictures to Instagram, the end user typically initializes
a connection to a server and then validates its authenticity (but not the other way round).

In this project we focus on the challenge of SSL certificate validation using the popular
library OpenSSL. A certificate basically represents an attestation that a public key belongs
to a certain entity, such as a hostname. Certificate validation is essential to prevent a man-
in-the-middle attacker from being able to intercept and manipulate the communication.
The validation of certificates consists of multiple steps (cf. [3, 2]):

Chain-of-trust verification. To validate the authenticity of a certificate we need to validate
its chain-of-trust. SSL certificates are issued by certificate authorities (CA), an
intermediary that must be trusted to only issue certificates to the owner of a certain
domain name. CAs are organized hierarchally, i.e. a root CA (whose certificate is
usually available on the user’s machine) issues a certificate for an intermediary CA,
and the intermediary CA issues a certificate for a domain name (cf. Figure 1). For
each step in this hierarchy we need to verify that the certificates have been correctly
signed.

Hostname verification. A valid certificate must belong to the hostname that a user tries
to connect to. Otherwise, an attacker could intercept the communication using a
certificate that is valid but belongs to a different domain name.

Certificate revocation When the private key of a server has been lost or was stolen, the
corresponding certificate should be invalidated. A client thus needs to check whether
a particular certificate has been revoked.

In practice, these steps have proven to be challenging due to the complicated APIs
of cryptographic libraries [2]. For example, OpenSSL will validate the certificate chain
but the developer must manually request and evaluate the verification result. Even more,
the validation will return a success if no certificate has been presented at all [3]. While
OpenSSL can also be configured to automatically abort the connection if the certificate
or the chain-of-trust is invalid, this is not a default.

Verifying the hostname differs greatly between versions of OpenSSL [5]. Version 1.0.1
and earlier did not provide any hostname checks, the developer needs to implement such

2

a check herself. Version 1.0.2 provides a set of configuration parameters to enable built-in
hostname verification, and Version 1.1.0 (finally) automatically validates the hostname.

Certificate revocation cannot be easily checked using OpenSSL APIs. Recent work by
Liu et al. [4] furthermore demonstrates that certificate revocation is generally an unsolved
problem. Only a tiny fraction of certificate revocations are available through existing
certificate revocation infrastructure, and most client software does not bother checking
these revocation lists at all.

3 Code Validation using CBMC and Property Monitors

CBMC [1] is a software tool that performs Bounded Model Checking of C and C++ code.
While it is able to check a wide variety of aspects of the code, such as buffer overflows
and pointer safety, we will mostly make use of its ability to verify user-specified assertions
in the context of property monitors. A property monitor allows us to track changes
in internal states across sequences of operations, as well as the correct order of these
sequences, and thereby to validate whether an API is correctly used by the developer.

There are different approaches one can take to create property monitors for OpenSSL
certificate validation. For example, we could rely on the OpenSSL documentation to
derive the assertions needed. Or, we could study how existing programs use the API and
base our property monitor on these examples. Because of the complexity of the APIs and
it’s documentation, we chose a hybrid approach: based on issues highlighted in previous
work and tutorials for using OpenSSL we first build a stylized working example of correct
API usage that we then manually validated using the SSL testing site badssl.com. We
can then use this example to construct property monitors and explore the feasibility of
Bounded Model Checking to validate correct API usage. If feasible, we can then apply
our technique to real-world examples.

To verify the correctness of application code, we need to model the internal behavior
of system and library calls. As we are interested in verifying the correct semantics of
OpenSSL API calls, we need to abstract the behavior of these calls. A common approach
to do this is to add code calling property monitors to existing program code. For example,
for each OpenSSL API function we could insert another function in front of it that takes
the same arguments and then updates our property monitor.

We decided to take a slightly different approach. Since all calls we are interested in
stem from an external library, we implement header stubs that simulate the behavior of
the library, and which CBMC will include instead of the original OpenSSL files. This
way, we do not need to modify the original program code to add our property monitors.
Hence, we can verify program code by running CBMC using our own OpenSSL header files:

cbmc file.c --function main --no-unwinding-assertions --unwind 1 -I ./include

A potential downside of this approach is that our property monitors may not capture all
of the internal state of OpenSSL. However, due to the limited complexity of certificate
validation we are confident that this is not an issue in our case.

We now present a simple property monitor that shows how one can verify the version
of the SSL/TLS protocol used when establishing a secure connection. While attacks on
outdated protocol versions of SSL mostly target browser software [7], it is nevertheless a
good idea to enforce a recent protocol version. In Listing 1, we exemplarily verify that

3

the protocol version is TLS 1.1. Note the assert() function that tells CBMC to validate
this condition.

Listing 1: Validation of the TLS Protocol Version

i n l i n e SSL CTX ∗SSL CTX new(const SSL METHOD∗ method) {
a s s e r t (method == TLSv1 1 cl ient method ()) ;
SSL CTX∗ ctx = (SSL CTX∗) mal loc (s i z e o f (SSL CTX)) ;
ctx−>method = method ;
re turn ctx ;

}

4 OpenSSL Property Monitors

We will now first briefly outline the OpenSSL calls necessary to verify that a secure
communication channel has been established based on our stylized example (cf. Listing
2). Then, we will explain how our header stubs allow CBMC to validate the code.

First, in lines 9–12, we initialize OpenSSL’s internal state. Then, we allocate a SSL
context (line 14) that can be shared by multiple connections, an I/O stream abstraction
(BIO, line 16–17), and an SSL object, respectively. We enable automatic verification of
the hostname in lines 21–22 (corresponding to the procedure available in OpenSSL 1.0.2
[5]) and perform the SSL handshake (line 25).

Next, we check whether the chain-of-trust verification succeeded by comparing the re-
turn value of SSL get verify result to X509 V OK. However, as SSL get verify result

will also return X509 V OK when the server did not send a certificate at all, we first need
to check that a certificate was indeed presented (lines 31–32).

Listing 2: Stylized Example for Certificate Validation with OpenSSL

/∗ Local v a r i a b l e s ∗/
BIO ∗bio ;
SSL CTX ∗ ctx ;
SSL ∗ s s l ;
X509 ∗ c e r t ;
X509 VERIFY PARAM ∗param = NULL;

/∗ I n i t i a l i z i n g OpenSSL ∗/
S S L l o a d e r r o r s t r i n g s () ;
ERR load BIO strings () ;
OpenSSL add al l a lgor i thms () ;
S S L l i b r a r y i n i t () ;

ctx = SSL CTX new(TLSv1 cl ient method ()) ;

b io = BIO new ss l connect (ctx) ;
B IO ge t s s l (bio , &s s l) ;
param = SSL get0 param (s s l) ;

4

/∗ Enable automatic hostname checks ∗/
X509 VERIFY PARAM set hostflags (param , X509 CHECK FLAG NO PARTIAL WILDCARDS) ;
X509 VERIFY PARAM set1 host (param , hostname , 0) ;

/∗ Ver i fy the connect ion opened and perform the handshake ∗/
i f (SSL connect (s s l) != 1){

/∗ Error during handshake ∗/
. . .

}

/∗ Check the c e r t i f i c a t e ∗/
c e r t = S S L g e t p e e r c e r t i f i c a t e (s s l) ;
i f (c e r t != NULL){

i f (S S L g e t v e r i f y r e s u l t (s s l) != X509 V OK){
/∗ Ver i f i c a t i o n f a i l e d ∗/
. . .

}
} else {

// No c e r t i f i c a t e
. . .

}

/∗ Send the r e que s t ∗/
BIO write (bio , request , s t r l e n (r eque s t)) ;

/∗ Read in the response ∗/
int p = BIO read (bio , r , s izeof (r) − 1) ;

We now describe the verification procedure conducted by our property monitors. The
full OpenSSL stub to use with CBMC can be found in our project deliverables, here we
will use a graphical representation for better legibility.

In Figure 2 we see the control flow graph that is verified by CBMC. When selecting a
protocol version, CBMC checks whether the SSL Method belongs to a set of Safe methods.

When configuring the context or the SSL object, the developer has the option to enable
automatic verification of certificates during the handshake using the flag SSL VERIFY PEER.
If automatic verification is set, the developer can provide a callback function that receives
1 if the certificate has passed the chain-of-trust verification, or 0 otherwise. This callback
function can be used to return a value of 0 (reject) or 1 (accept) and thereby override
the internal validation. Because the callback function can potentially allow to initiate
insecure connections (if it always accepts certificates that do not pass the internal test),
we explicitly verify whether it accepts invalid certificates.

In sequence, we verify that a data transmission can only occur iff automatic verification
was set during the configuration state or if the certificate is not NULL after the handshake
and SSL get verify result returns X509 V OK, which is tracked internally. To validate
the hostname, we ensure that the hostname has been set.

5

Start

Initialize OpenSSL

Create Context

Select Protocol Version

Configure Context Set verify during handshake Error

Create BIO

Create SSL

Configure SSL

Set Hostname

SSL/TLS handshake

Set verify during handshake

Read certificate Verify Result Data Transmission

SSL shutdown

End

ctx = SSL Context

ctx.method = SSL Method ∧ Safe Method(SSL Method)

callback(0) ≡ 1

ctx.mode = SSL VERIFY PEER

bio = BIO

ssl = SSL ∧ ssl.mode = ctx.mode

ssl.mode = SSL VERIFY PEER

callback(0) ≡ 1

ssl.hostname = hostname

Fail

ssl.cert ≡ null

ssl.cert 6≡ null

ssl.result 6≡ X509 V OK

ssl.result ≡ X509 V OK ∧
ssl.mode ≡ SSL VERIFY PEER ∧
ssl.hostname 6≡ NULL

Fig. 2: OpenSSL control flow graph to establish a secure connection.

6

5 Applying the Property Monitors

The next step is to apply our property monitors to other software projects. When we
originally wrote our property monitors in C++, we adapted two simple examples1 from
GitHub as a first starting point. These helped us to ensure that our property monitors
are applicable, and both did not include the check for missing certificates. After that, due
to some issues with C++ libraries, we modified our property monitors to use C only.

We then tried to apply our property monitors to some old versions of the projects
that according to [3] contained API usage bugs in the past. Overall, we had a number of
issues (discussed below) with validating these programs using our property monitors and
CBMC. These mostly prevented us from employing a structured approach for testing our
property monitors on the projects listed in [3].

Use of Other OpenSSL Functionality Our property monitors do not cover all functions that
programs may use, e.g., they often import other cryptographic functionality such
as hash functions. Our solution usually was to remove any other OpenSSL include
statements.

Dependencies and Symbol Definitions Projects often had dependencies that are irrelevant
for certificate validation, but whose (missing) header files CBMC would try to
import. When we removed these include statements, we sometimes ended up with
missing symbol definitions, where we either had to manually add these definitions
or remove the code sections that used these symbols.

Optional SSL Usage Some codebases make the use of SSL optional using conditional groups.
For example, the spamc library of SpamAssassin requires us to pass the option -D

SPAMC SSL=true in order for CBMC to validate the SSL code.

Aborting In some programs we found usage of functions outside of the main files that we
tested, which would log debug information and then abort the program. If we did
not pass these additional files to CBMC, it will assume that the program does not
terminate and thereby may incorrectly report validations.

CBMC Library Abstractions CBMC provides internal abstraction for the string functions
in string.h. Strangely, CBMC would not validate beyond these functions, but
report all following assertions as SUCCESS. We were not able to debug this issue and
added replacement functions that return nondeterministic values as a temporary
fix to allow validation. (Another possibility should be to disable all internal library
abstractions with the option --no-library, but this did not produce correct results
for our stylized example).

Project Size We performed our experiments in a virtual machine equipped with 4GB of
memory. This was not sufficient for some of the projects we tried (e.g., picolisp).

1 https://github.com/yunuscanemre/cpsc526/blob/master/hw1/c/sslFtp/client/ftpClient.

cpp

https://github.com/LaurieHarding-Russell/Prometheus/blob/master/prometheus/internet.

cpp

7

Tab. 1: Results for the verification of different software projects

Project Version Results Issues/Notes

spamc 3.3.2 uses old protocol version requires -D SPAMC SSL=true

missing verify result check
missing hostname check

ratproxy 1.58 uses old protocol version requires --nondet-static

missing verify result check
missing hostname check

dma 0.9 — compilation fails
picolisp 3.1.5.2 — runs out of memory

Let us highlight these issues with the example of the spamc module of the SpamAssassin
spam filter, for which we retrieved an old version (3.3.2) from Ubuntu launchpad2. First,
we need to run the configure script to generate relevant config files. Next, we remove
two OpenSSL imports from util.h that produced syntax errors in CBMC. As various
string functions are used in this file, our temporary replacement of these functions are
also needed for CBMC to correctly validate the code. Now, we can finally run CBMC on
the file libspamc.c. The failed verification results CBMC reports missing validation of
the chain-of-trust verification as well as missing hostname validation.

We report the results of the examples that we have included in our project deliverables
in Table 1. These were taken from [3], however missing information about the version of
the software made exact reproducibility difficult.

6 Conclusion

In our project we evaluated the feasibility of verifying correct API usage of the crypto-
graphic library OpenSSL using Bounded Model Checking in combination with property
monitors. On the one hand, we were able to show the feasibility of our approach based on
a stylized example that we built based on relevant related work. Our property monitors
are able to detect the use of obsolete protocol versions, mistakes made when verifying the
chain-of-trust as well as missing hostname validation. On the other hand, we encountered
various limitations of our approach when we tried to apply it to other software, which
makes it currently difficult (and sometimes frustrating) to use.

While it might be feasible to improve our approach and automate some of the fixes
we discussed in the last section (especially for someone with more familiarity of the C
programming language), this bears the question whether the effort is beneficial. Ultimately,
the scenario at hand is rather simple and previous work [3, 8, 2] has pointed out the most
common errors developers make in their implementations. Furthermore, the amount of
internal state that our property monitors must keep track of is limited. In many cases a
manual inspection of the source code was easier than applying our property monitors. In
this case, more abstract solutions (e.g., [3, 8]) may provide a better approach to verifying
these issues since they are able to omit some of our technical problems. A complementary

2 https://launchpad.net/ubuntu/+source/spamassassin

8

solution would be to have better abstractions of the cryptographic procedures themselves
(i.e. as a software package that people use instead of OpenSSL). To construct this, our
property monitors could be helpful to prove correctness.

An open question remains whether other areas of API usage might benefit more from
our approach. Initially, we evaluated a few related ideas such as the verification of digital
signatures, but discovered that most of these validations are not exposed by the API
of cryptographic libraries. We also evaluated the feasibility of synthesis to create our
property monitors, but the limited state we need to keep track of reduces the utility of
such an approach.

To conclude, this project revealed the challenges in writing secure code using crypto-
graphic libraries, and also the challenge in countering these with model checking techniques.
Nevertheless, more research in this direction is certainly helpful and we encourage others
to follow our example.

References

[1] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C
Programs”. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2004). Ed. by Kurt Jensen and Andreas Podelski. Vol. 2988. Lecture Notes
in Computer Science. Springer, 2004, pp. 168–176. isbn: 3-540-21299-X.

[2] Martin Georgiev et al. “The Most Dangerous Code in the World: Validating SSL
Certificates in Non-Browser Software”. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS). ACM. 2012, pp. 38–49.

[3] Boyuan He et al. “Vetting SSL usage in applications with SSLint”. In: 2015 IEEE
Symposium on Security and Privacy. IEEE. 2015, pp. 519–534.

[4] Yabing Liu et al. “An End-to-End Measurement of Certificate Revocation in the
Web’s PKI”. In: Proceedings of the 2015 ACM Internet Measurement Conference.
ACM. 2015, pp. 183–196.

[5] OpenSSL Wiki. Hostname Validation. 2016. url: https://wiki.openssl.org/
index.php?title=Hostname_validation&oldid=2359 (visited on 11/22/2016).

[6] Wikipedia. OpenSSL — Wikipedia, The Free Encyclopedia. 2017. url: https://
en.wikipedia.org/w/index.php?title=OpenSSL&oldid=758980829 (visited on
01/08/2017).

[7] Wikipedia. Transport Layer Security — Wikipedia, The Free Encyclopedia. 2017. url:
https://en.wikipedia.org/w/index.php?title=Transport_Layer_Security&

oldid=759082389#Attacks_against_TLS.2FSSL (visited on 01/09/2017).

[8] Insu Yun et al. “APISan: Sanitizing API Usages through Semantic Cross-checking”.
In: Proceedings of the 25th USENIX Security Symposium (Security). Austin, TX,
2016.

9

