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1 Introduction

This report relates the main results and methods of Constructive Discrepancy
Minimization for Convex Sets [6] by Thomas Rothvoß, a beautiful and largely
self-contained paper in algorithmic discrepancy theory. This paper ties together
or extends many previous results, including those of Gluskin [4], Giannopou-
los [3], Bansal [1], and Lovett and Meka [5].

The primary motivation and application for this work is in solving the dis-
crepancy minimization problem optimally, up to a constant factor. The prob-
lem is as follows: Given sets S1, . . . , Sn ⊆ [n], find a discrepancy function
χ : [n]→ {−1, 1} that minimizes the discrepancy,

maxj∈[n]|χ(Sj)|

where χ(S) denotes the sum
∑
i∈S χ(i).

It was shown by Spencer [8] in 1985 that any instance of the problem has
a discrepancy function achieving maxj∈[n]|χ(Sj)| ≤ 6

√
n, and it is well known

that this is optimal in the worst case, up to a small constant factor. However,
Spencer’s proof does not yield an efficient algorithm to find such a discrepancy
function - indeed, his proof involves the pigeonhole principle on exponentially
many items.

Rothvoß’s paper gives an elegant method to construct a discrepancy function
with O(

√
n) discrepancy in polynomial time. The basic algorithm that achieves

this is almost embarrassingly simple, but the analysis requires some real insight,
and there are some details that need to be looked after. We shall also see that
the analysis, in its current state, does not yield a constant anywhere close to
Spencer’s existential guarantee.

2 Preliminaries

A half-space. Given a ∈ Rn, λ ∈ R, a n-dimensional half-space is a set of the
form H := {x|〈a, x〉 ≤ λ}.
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A strip. Given λ ∈ Rn, b ∈ R, an n-dimensional strip is a set of the form
S := {x||〈a, x〉| ≤ b}.

Given a set S ⊆ Rn, we define the distance from a point y ∈ Rn to S
as d(x, S) = miny∈S ||x − y||2. We say y ∈ S is the projection of x to S if
d(x, S) = ||x − y||2. In other words, y is the point in S closest to x. Let
Sδ = {x ∈ Rn|d(x, S) ≤ δ} be the set of points at distance at most δ from S.
Gaussian Measure. Let Nn(0, 1) be the n-dimensional standard Gaussian
distribution. For all measurable set S,

γn(S) = Prx←N(0,1)n [x ∈ S]

The definition of Gaussian Measure allow us to compute the probability that a
random n-dimensional Gaussian point is at distance at most δ from S:

Prx←Nn(0,1)[d(x, S) ≤ δ] = γn(Sδ)

Let us now cover the ingredients that will be used in proving the main the-
orem of Rothvoß’s work. The proof is a consequence of three essential lemmas,
here listed as Lemma 2.1, Lemma 2.2, and Lemma 2.3.

Lemma 2.1 (Gaussian Isoperimetric Inequality). Assume K ⊆ Rn is measur-
able set and H is a half-space such that γn(K) = γn(H), then

∀δ ≥ 0, γn(Kδ) ≥ γn(Hδ)

Lemma 2.2. For all ε > 0, if K is a measurable set and γn(K) ≥ e−εn, then
γn(K3

√
εn) ≥ 1− e−εn.

Proof. For a half-plane H = {x|x1 ≤ λ}, pick λ such that γn(H) = γn(K). If
e−εn ≥ 1/2, then the conclusion is trivially true. If e−εn < 1/2, we have λ < 0.
Suppose for contradiction, λ < −3

√
εn/2, then

γn(H) =

∫ λ

−∞

e−x
2/2

√
2π

dx <

∫ 3
√
εn/2

−∞

e−x
2/2

√
2π

dx

≤ e−9εn/4

< e−εn ⇒⇐

where we use the fact for all t ≥ 0,
∫∞
t

e−x2/2
√

2π
dx ≤ e−t

2/2. We have λ +

3
√
εn ≥ 3

√
εn/2, and by symmetry H3

√
εn ≥ 1 − e−εn which by the Gaussian

Isoperimetric Inequality implies γn(K3
√
εn) ≥ 1− e−εn.

Lemma 2.3 (Gaussian Correlation Inequality). Let K ⊆ Rn, S ⊆ Rn be sym-
metric convex bodies, then

γn(K ∩ S) ≥ γn(K)γn(S)
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The Gaussian Correlation Inequality was proved by Royen [7] in 2014, after
being open for over four decades. We shall only need (and shall only prove) a
simple version of the inequality, wherein S is a strip.1

Proof assuming S is a strip. Write S = {x ∈ Rn | |〈x, z〉| ≤ λ}, where z is a
unit vector in Rn and λ ≥ 0. Without loss of generality, we may assume z = en,
so that

S = {x ∈ Rn | |xn| ≤ λ}

First, notice that the lemma is trivial when n = 1 as both K and S must be
strips, and so K ∩ S is just the smaller of the two sets.

Now let

Kα = {(x1, x2, . . . , xn−1) ∈ Rn−1 | (x1, x2, . . . , xn−1, α) ∈ K}

and define
Is(K) = {α ∈ R | γn−1(Kα) ≥ s}.

Then the measure of K ∩ S can be formulated as

γn(K ∩ S) =

∫ ∞
0

γ1(Is(K) ∩ [−λ, λ])ds.

Since the lemma holds in one dimension, we have∫ ∞
0

γ1(Is(K) ∩ [−λ, λ])ds ≥
(∫ ∞

0

γ1(Is(K))ds

)
γ1([−λ, λ]) = γn(K)γn(S)

as required.

3 The Main Theorem

Now we are prepared to describe and analyze Rothvoß’s algorithm, which chooses
a point in a sufficiently large symmetric convex body K ⊆ Rn such that the
point also lies the hypercube [−1, 1]n and, with high probability, has many
entries in {−1, 1}.

The algorithm consists of selecting a symmetric convex setK (i.e x ∈ K, then
−x ∈ K) with large enough Gaussian measure. We first sample a random point
x∗ from the n-dimensional Gaussian distribution and project x∗ to K∩ [−1, 1]n.
The main theorem states that this algorithm outputs a point where a constant
fraction of the entries are either −1 or 1 with high probability. More formally:

• Sample x∗ ← Nn(0, 1).

• Output y∗ = arg miny∈K∩[−1,1]n ||x∗ − y||2.

Theorem 1. For all 0 < ε < 1
9000 , δ = 3/2ε log 1/ε, if K ⊆ Rn is a symmetric

convex set with Gaussian measure at least e−δn, then with probability at least
1− e−Ω(n), at least εn of the coordinates of y∗ are {−1, 1}.

1This proof is based on that given in [3].
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Proof. Let I∗ = {i ∈ [n]|y∗i ∈ {−1, 1}}. In the first step of the proof, we
show that Pr[d(x∗,K ∩ [−1, 1]n) ≥

√
n/5] ≥ 1 − e−Ω(n). We then argue that

Pr[d(x∗,K ∩ [−1, 1]n) <
√
n/5||I∗| < εn] ≥ 1− e−Ω(n). By Bayes’ rule,

Pr[|I∗| < εn] ≤ Pr[d(x∗,K ∩ [−1, 1]n) <
√
n/5]

Pr[d(x∗,K ∩ [−1, 1]n) <
√
n/5||I∗| < εn]

≤ e−Ω(n)

which allows us to conclude that |I∗| ≥ εn with high probability.
We first show that d(x∗,K ∩ [−1, 1]n) ≥

√
n/5 with high probability. For

all i ∈ [n], Prx←Nn(0,1)[|x∗i | ≥ 2] = 2
∫∞

2
e−x2/2
√

2π
dx > 1

25 by the 1-dimensional

density function for the standard Gaussian distribution. We have,

d(x∗,K ∩ [−1, 1]n) = min
y∈K∩[−1,1]n

||x∗ − y||2

≥

√√√√ n∑
i=1

(x∗i − yi)2, for some y ∈ K ∩ [−1, 1]n

≥

√√√√ n∑
i=1

I[|x∗i | ≥ 2](2− 1), by the fact y ∈ [−1, 1]n and |x∗i | ≥ 2

Next, we apply Chernoff bound, Lemma 6.1 on
∑n
i=1 I[|x∗i | ≥ 2]. Because µ =

E[
∑n
i=1 I[|x∗i | ≥ 2]] > n/25, there is a constant δ > 0 such that (1−δ)µ = n/25.

We conclude that with probability at least 1 − e−Ω(n),
∑n
i=1 I[|xi| ≥ 2] ≥

n/25. It follows,

d(x∗,K ∩ [−1, 1]n) ≥
√
n/25

=
√
n/5

Let’s now bound the probability that d(x∗,K∩[−1, 1]n) <
√
n/5 when |I∗| < εn.

Let K(I∗) := K ∩ {x ∈ Rn|∀i ∈ I∗, |xi| ≤ 1}. We will argue that for all x,
d(x,K ∩ [−1, 1]n) = d(x,K(I∗)). This follows by the fact that for all x ∈ Rn,
d(x, ·) is a minimization problem of a strictly convex function over a convex
domain.
Strictly convex. A function f : Rn → R is strictly convex if for all x ∈ Rn,
y ∈ Rn, x 6= y, and for all α ∈ (0, 1), f(αx+ (1− α)y) < αf(x) + (1− α)f(y).

Lemma 3.1. Let P and Q be convex sets. Let x∗ = arg minx∈P∩Q f(x). As-
sume x∗ is in the interior of P . If f : Rn → R is a strictly convex function,
then x∗ minimizes f(x) subject x ∈ Q.

Proof. Suppose for contradiction there is y∗ ∈ Q such that f(y∗) < f(x∗). For
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all α ∈ (0, 1),

f(αx∗ + (1− α)y∗) < αf(x∗) + (1− α)f(y∗)

≤ αf(x∗) + (1− α)f(x∗)

= f(x∗)

Because x∗ is in the interior of P , there exists α ∈ (0, 1) such that αx∗ + (1 −
α)y∗ ∈ P ∩Q, contradicting x∗ minimizes f(x) subject to x ∈ P ∩Q.

To apply this Lemma, observe the `2 norm is strictly convex, Lemma 6.2.
Let P = {x ∈ Rn||xi| ≤ 1,∀i 6∈ I∗}, and let Q = K(I∗). Observe that P ∩Q =
K ∩ [−1, 1]n and if x∗ is the projection of a point x to P ∩ Q, x∗ must be in
the interior of P since all points in the boundary of P are not points in Q and
vice-versa. It follows by Lemma 3.1, that d(x,K ∩ [−1, 1]n) = d(x,K(I∗)).

By the Gaussian correlation inequality, for an index set |I| < εn,

γn(K(I)) ≥ γn(K)
∏
i∈I

γn({x ∈ Rn||xi| ≤ 1})

≥ e−δnγn(K)
∏
i∈I

γn({x ∈ Rn||xi| ≤ 1}), by assumption γ(K) ≥ e−δn

≥ e−δne−1/2|I|, for 1-dimensional strip of width 2, γn(S) ≥ e−1/2

≥ e−2δn, by the fact ε ≤ δ

By Lemma 2.2, γn(K(I)3
√

2δn) ≥ 1− e−2δn. Let B := ∩|I|≤εn(K(I)3
√

2δn)).

By Lemma 6.3, the number of sets of size at most εn is at most 2nh(ε) ≤
e3/4ε log 1/εn = eδn. It follows by the Gaussian Correlation Inequality that

γn(B) = 1− γn(∪|I|≤εn(Rn\K(I3
√

2δn))

≥ 1−
∑
|I|≤εn

γn(Rn\K(I3
√

2δn)), by Union bound

≥ 1− eδne−2δn, by the fact |{I||I| ≤ εn}| ≤ eδn

= 1− e−δn

This implies, for all |I| ≤ εn, γn(K(I)3
√

2δn) ≥ 1− e−δn and by definition

Pr[d(x,K(I)) ≤
√
n/5] ≥ Pr[d(x,K(I)) ≤ 3

√
2δn]

≥ 1− e−δn, by our choice of δ, 3
√

2δn ≥
√
n/5.

In particular, when I∗ ≤ εn, we have

Pr[d(x,K ∩ [−1, 1]n) ≤
√
n/5||I∗| ≤ εn] = Pr[d(x,K(I∗)) ≤

√
n/5||I∗| ≤ εn]

≥ 1− e−δn

Together with the fact Pr[d(x,K ∩ [−1, 1]n) ≥
√
n/5] ≥ 1 − e−Ω(n), implies

Pr[|I∗| ≤ εn] ≤ e−Ω(n) which concludes the proof.
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4 Minimizing Discrepancy By Bootstrapping

In this section, we see how to apply Theorem 1 to the discrepancy problem
defined in the introduction. If we view the discrepancy function as a colouring of
the elements in [n] by either −1 or 1, our goal is to construct a full colouring with
low discrepancy; along the way, we shall critically deal with partial colourings,
where some elements are assigned values in {−1, 1} and others have values in
(−1, 1).

The algorithm of the last section quickly finds a partial colouring having low
discrepancy and at least εn ±1-valued entries (with high probability). To solve
Spencer’s problem effectively, we need a way to bootstrap Theorem 1 to extend
a partial colouring x ∈ [−1, 1]n to a new vector that still has low discrepancy,
but has ≈ εn additional entries in {−1, 1}.

4.1 Controlling Discrepancy

For the purposes of minimizing discrepancy, the symmetric convex body we are
interested in has the form

K∗ = {x ∈ Rn |

∣∣∣∣∣∣
∑
i∈Sj

xi

∣∣∣∣∣∣ ≤ √n for all j ∈ {1, . . . , n}}

More specifically, we are interested in scalings of K∗. The set cK∗ contains
all solutions x ∈ {−1, 1}n such that the discrepancy function χ(i) = xi has
maxjχ(Sj) = maxj |〈x, Sj〉| ≤ c

√
n, but it relaxes the discrepancy function to

allow “fractional colourings”, where x may have real coordinates.
Clearly K∗ is symmetric and convex, as is cK∗ for any c ∈ R. In order to

apply the techniques of Theorem 1 to cK∗, we need to ensure that γn(cK∗) is
sufficiently large.

Let strip(z,M) denote {x ∈ Rn | |〈x, z〉| ≤M}, and observe that

cK∗ =

n⋂
j=1

strip(1Sj , c
√
n).

By the Gaussian Correlation inequality, γn(cK∗) ≥
∏n
j=1 γn(strip(1Sj

, c
√
n)).

Since the “width” of strip(1Sj
, c
√
n) is 2 c

√
n√
|Sj |

, by rotational symmetry we have

γn(strip(1Sj
, c
√
n)) = γ1

([
− c
√
n√
|Sj |

,
c
√
n√
|Sj |

])
≥ γ1 ([−c, c])

Let us estimate this value (assuming c ≥ 1) using Hoeffding’s inequality:

γ1([−c, c]) ≥ 1− 2 exp(−c2/2) ≥ exp(−2 exp(−c2/2)) (∗)

Thus γn(cK∗) ≥
∏n
j=1 exp(−2 exp(−c2/2)) = exp(−2n exp(−c2/2)).
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Theorem 1 only requires that γn(cK∗) ≥ exp(−δn), which is satisfied as long
as

c ≥
√

2 ln
1

2δ

As δ < 1/500, we can safely use any c larger than
√

2 ln 500
2 ≥ 3.33.

4.2 Extending a Partial Colouring

The first issue to overcome is how to use the algorithm to substantially extend
an existing solution without changing any entries that are already in {−1, 1}.
The following lemma accomplishes this, at the small cost that only ε

2n entries
are made tight, rather than εn.

Lemma 4.1. Let z ∈ (−1, 1)n. If K ⊆ Rn is a symmetric convex set with
γn(K) ≥ exp(−δn), then there is a polynomial time algorithm to find a point
y ∈ (z +K) ∩ [−1, 1]n with at least ε

2n entries in {−1, 1}.

Proof. Define the linear map F : Rn → Rn by

F (ei) =
sgn(zi)

1− |zi|
ei

where ei denotes the ith standard basis vector.
We stretch K according F : Since F is linear, F (K) is still a symmetric

convex body. Moreover, for all i, we have 1
1−|zi| ≥ 1 since 0 ≤ |zi| < 1. Thus

K ⊆ F (K), and in particular γn(F (K)) ≥ γn(K) ≥ exp(−δn).
Now apply the main algorithm to F (K):

• Sample x∗ ← Nn(0, 1).

• Output y∗ = arg miny∈F (K)∩[−1,1]n ||x∗ − y||2.

By Theorem 1, y∗ ∈ F (K) ∩ [−1, 1]n and y∗ has at least εn ±1-valued entries
with high probability (if this fails, then resample and repeat until y∗ has εn
tight entries).

Now let y = z+F−1(y∗) so that yi = zi+sgn(zi)(1−|zi|)y∗i . Since y∗i ∈ [−1, 1]
and zi ∈ (−1, 1) for all i ∈ [n], we have y ∈ [−1, 1]n. Thus, the algorithm always
finds y ∈ (z +K) ∩ [−1, 1]n.

Moreover, if y∗i = 1, then

yi = zi + sgn(zi)(1− |zi|)y∗i = sgn(zi) ∈ {−1, 1}.

That is, whenever y∗i = 1, the corresponding entry of y is tight (either 1 or −1).
Since at least εn entries of y∗ are either 1 or −1, we expect ε

2n entries of y to
be in {−1, 1}; however, it could be that most of the tight entries in y∗ have the
value −1, in which case the corresponding entries of y may not be tight.

To complete the algorithm, we add one more step: If fewer than ε
2n entries

of y∗ have the value 1, then replace y∗ by −y∗. As K and F (K) are symmetric,
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the difference between y∗ and −y∗ is insignificant. Since we required y∗ to have
εn tight entries, either y∗ or −y∗ must have ε

2n entries with value 1. After this
operation, y will have at least ε

2n tight entries, as required.

We can also apply this lemma on a subspace of Rn in order to extend a vector
with some tight entries and some nontight entries. For any subspace U ⊂ Rn,
let γU denote the Gaussian measure on U .

Corollary 4.1. Given y(t) ∈ [−1, 1]n, let L = {i ∈ [n] | y(t)
i 6∈ {−1, 1}} and

U = span({ei | i ∈ L}); then U is the subspace of Rn on the unfixed entries of
y(t).

If K ⊆ U is a symmetric convex set with γU (K) ≥ exp(−δ dim(U)), then
there is a polynomial time algorithm to find a point y(t+1) ∈ (y(t) +K)∩ [−1, 1]L

such that yi ∈ {−1, 1} for at least ε
2 dim(U) indices i in L.

4.3 Putting It Together

We are now prepared to use the partial colouring method to find a complete
colouring.

Theorem 2. Given S1, S2, . . . , Sn ⊆ [n], there is a polynomial time algorithm
to find a point y ∈ {−1, 1}n such that |

∑
i∈Sj

yi| ≤ C
√
n for all j ∈ [n] for

some absolute constant C.

Proof. Beginning with y(1) = 0n, we shall find a sequence of partial colourings
y(2), y(3), . . . that have more and more fixed coordinates, while each stays within
cK∗ for some constant c, and hence the discrepancy is always at most c

√
n.

When the number of unfixed coordinates is sufficiently small, say log n, then
those coordinates can be set to ±1 arbitrarily.

For all t ≥ 1,

• let L(t) denote the set of unfixed coordinates of y(t):

L(t) = {i | y(t−1)
i ∈ (−1, 1)}

• let U (t) denote the subspace of unfixed coordinates of y(t−1):

U (t) = span{ei | i ∈ L(t))}

• let m(t) = |L(t)| = dim(U (t)), and

• let K(t) = C(t)K∗ ∩ U (t), where

C(t) =

√
2

(
ln

1

δ
+ ln

2n

m(t)

)
m(t)

n
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To obtain y(t+1) from y(t), we apply Corollary 4.1 using the symmetric convex
body K(t) = C(t)K∗ ∩ U (t).

Let us first check that K(t) has sufficiently large measure in U (t) to apply
the corollary: Observe that

K(t) =
⋂
j∈[n]

strip

(
1Sj

C(t)
√
n

)
∩ U (t) =

⋂
j∈[n]

strip

(
1Sj∩L(t)

C(t)
√
n

)

Since ‖1Sj∩L(t)‖2 ≤ ‖1L(t)‖2 =
√
m(t), we have

γU(t)

(
strip

(
1Sj∩L(t)

C(t)
√
n

))
≥ γ1

([
−C(t)

√
n

m(t)
, C(t)

√
n

m(t)

])
≥ exp

(
−2 exp

(
− (C(t))2

2

n

m(t)

))
by (∗). Thus, by Lemma 2.3,

γU(t)(K(t)) ≥ exp

(
−2n exp

(
− (C(t))2

2

n

m(t)

))
= exp

(
−2n exp

(
−

2
(
ln 1

δ + ln 2n
m(t)

)
m(t)

n

2

n

m(t)

))

= exp

(
−2n exp

(
− ln

1

δ
− ln

2n

m(t)

))
= exp

(
−2nδ

m(t)

2n

)
= exp(−δm(t)).

Thus, γU(t)(K(t)) is sufficiently large to apply Corollary 4.1.
In each step, the number of unfixed entries decreases by a factor of ε

2 ; hence,

after T = O(log n) steps, the number of unfixed entries of y(T ) will be at most
log n. The log n remaining entries can then be assigned values in ±1 arbitrarily;
the resulting increase in discrepancy will be at most 2 log n.

It only remains to bound the discrepancy of y(T ) Since y(t) ∈ y(t−1) +C(t)K∗

for all t ≥ 1, it follows that

y(T ) ∈ y(T−1) + C(T )K∗

⊆ y(T−2) + C(T−1)K∗ + C(T )K∗

⊆ y(T−3) + C(T−2)K∗ + C(T−1)K∗ + C(T )K∗

...

⊆ y(0) +

(
T∑
h=1

C(h)

)
K∗ =

(
T∑
h=1

C(h)

)
K∗

Let us bound
∑T
h=1 C

(h). Since m(t+1) ≤ (1− ε/2)m(t) for all t ≥ 1, we have
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m(t) ≤ (1− ε/2)
t−1

n. Hence,

C(t) ≤

√
2

(
ln

1

δ
+ 1 + (t− 1) ln

1

1− ε/2

)
(1− ε/2)t−1

Notice that
∑T
h=1 C

(h) converges to a constant because it decreases geometri-

cally, approximately mirroring
√

1− ε/2
t−1
≈ 0.9999t−1. Therefore, y(T ) is in

CK∗ for some constant C (which depends on ε), and so the discrepancy of the
final colouring is O(

√
n).

In this report, we have attempted to manage the constants involved in the
analysis in order to gauge the discrepancy of the final output. Unfortunately, if
ε is as small as 1

9000 (as required by Theorem 1), then
∑T
h=1 C

(h) may be very
large indeed - larger than 18000, and certainly not comparable with the constant
in Spencer’s bound, which is about 5.32. We could find an exact upper bound
by carefully analyzing the sum in this last step, but it hardly seems worthwhile;
it will be tens of thousands of times larger than 5.32.

5 A Few Words About Eldan-Singh

In 2014, a similar algorithm to find a point in a symmetric convex body hav-
ing many ±1 entries was proposed by Eldan and Singh [2]2. Rothvoß’s algo-
rithm chooses a normally distributed point x∗ ∈ Rn and then returnes y∗ =
arg miny∈K ‖x∗ − y∗‖; their approach was to choose y∗ = arg maxy∈K〈x∗, y〉
instead. The theorem in this work corresponding to Theorem 1 is as follows.

Theorem 3 (Eldan and Singh, 2014). For any constant 0 < ε <

(
1−
√

2/π

32

)4

,

there exists a constant 0 < δ < 1 such that every symmetric convex body K ⊆ Rn
with γn(K) ≥ e−εn, the point y∗ = arg maxy∈K〈x∗, y〉 where x∗ is a standard
Gaussian in Rn, satisfies #{i ∈ [n] | |xi| = 1} ≥ δn with probability at least 1

2 .

We looked at this alternative approach in the hopes that it would improve
the constants involved, or make them easier to analyze. Unfortunately, neither
seems to be the case: Their range for ε is smaller than that in Theorem 1, as(

1−
√

2/π

32

)4

≈ 1.6 · 10−9 � 1
9000 . The value of δ in their analysis is eventually

chosen to be the same as ε.The probability of success is also much worse ( 1
2

instead of 1− exp(−Ω(n))). Though this approach has advantages - one being
that the algorithm involves optimizing a linear program rather than a SOS
program - the constants appear even more difficult than those of Rothvoß.

2The paper also includes an approach to finding a partial colouring in a non-symmetric
convex body, which is interesting in its own right. It is an open question if this approach can
be bootstrapped to produce a full colouring.
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6 Appendix

Lemma 6.1 (Chernoff Bound). For independent random variables x1, ..., xn
taking values {0, 1}, let X =

∑n
i=1 xi, µ = E[X], then

Pr[X ≤ (1− δ)µ] ≤ e−δ
2µ/2

Lemma 6.2. The Euclidean norm is strictly convex.

Proof. For all x ∈ Rn, y ∈ Rn, if x and y are not linearly dependent, then for
all α ∈ (0, 1),

||αx+ (1− α)y||22 = α2||x||22 + (1− α)2||y||22 + 2α(1− α)

n∑
i=1

xiyi

(α||x||2 + (1− α)||y||2)2 = α2||x||22 + (1− α)2||y||22 + 2α(1− α)||x||2||y||2

Subtracting the equations,

||αx+ (1− α)y||22 − (α||x||2 + (1− α)||y||2)2 = 2α(1− α)(〈x, y〉 − ||x||2||y||2)

< 0, by Cauchy–Schwarz

where in the last inequality, we use the fact Cauchy-Schwarz is tight only when
x and y are linearly dependent. When x and y are linearly dependent, it is easy
to check that ||αx+ (1− α)y||2 = α||x||2 + (1− αy)||y||2 iff x = y.

Lemma 6.3. Let S = ∪εni=1

(
[n]
i

)
be the collection of all subsets of size at most

εn, then |S| ≤ 2h(ε)n where h(ε) = ε log(1/ε)+(1− ε) log(1/(1− ε)) is the binary
entropy.

Proof. Let X ⊂ [n], be a uniformly random subset of size at most εn. The
entropy of X is given by:

H(X) =
∑

I⊆[n]||I|≤εn

−Pr[X = I] log(Pr[X = I])

= −|S|/|S| log(1/|S|)
= − log(1/|S|)

This implies |S| = 2H(X). Define the indicator random variable Xi = I[i ∈ X].
By additivity of entropy, H(X) ≤

∑n
i=1H(Xi) = nh(ε) which concludes the

proof.
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