COS 445 – Precept 1

Matheus Venturyne

February 9th, 2018

1 Deferred Acceptance

Let S be the set of students, U the set of universities and assume each university selects at most one student and |S| = |U|. Let ψ be the set of stable matchings and define $best : S \to U$ to be a mapping of a student to the best university he/she could match among all stable matchings in ψ . Similarly, we can define $worst : U \to S$ to be a mapping of a university to the worst student it could match.

Theorem 1 When students propose, Deferred Acceptance (DA) outputs the best stable matching for students or

$$M^* = \{(s, best(s)) | s \in S\}$$

Proof. Assume for contradiction DA outputs a matching $M \neq M^*$. During the execution of DA, let student s be the first student that is rejected by best(s) in favor of some student s'. Consider the stable matching M' where s matches with best(s). In M', student s' matches with $u' \neq best(s)$. Clearly, $s' \succ_{best(s)} s$ since best(s) rejects s in favor of s'. In addition, since s is the first student to be rejected by best(s), s' proposes to best(s) before u' implying $best(s) \succ_{s'} u'$. Finally, observe (s', best(s)) forms a blocking pair on M', contradicting M' is a stable matching.

Theorem 2 When students propose, Deferred Acceptance (DA) outputs the worst possible stable matching for universities or

$$M^* = \{(worst(u), u) | u \in U\}$$

Proof. Let M be the stable matching resulting of the execution of DA and assume towards contradiction that it is not the worst possible stable matching for universities. Then there is a university u that matches with a student s and $s \succ_u s'$, where s' = worst(u). By definition, there is a stable matching M' where u matches with student s'. In the matching M, student s matches with some university u' and by Theorem 1, $u \succ_s u'$. Finally, observe (s, u) forms a blocking pair in M', contradicting M' is a stable matching.

Corollary 3 DA always outputs the same stable matching.

Proof. Follows directly from Theorem 1 or 2.

2 Optimization

Minimize the following functions where x^2 represents the inner product $\langle x, x \rangle$.

- 1. $f(x) = ce^{-x^2}, x \in \mathbb{R}^n$ Solution. $\nabla f(x) = -2cxe^{-x^2}$ so the function is minimized when $x \to \infty$.
- 2. $f(x) = x_1^2 2x_2^2$, $(x_1, x_2) \in \mathbb{R}^{+2}$. Solution. $\nabla f(x) = (2x_1, 4x_2)$ so the function is minimized when $x_1 = x_2 = 0$. ■
- 3. f(x) = ce^{-x²} and x ∈ ℝ² is a point in the unit circle centered in 0.
 Solution. The constraint states that x²₁+x²₂ = 1 and note that x² = ||x||² = x²₁+x²₂; therefore f(x) = c/e for any feasible value of x. ■

3 Probability

1. Consider a classroom with n students where each student is assigned a sit. The students leave the room and pick a sit uniformly at random. Compute the expected number of students that sit on their assigned sit.

Solution. The probability a student picks his own sit is $\frac{1}{n}$. Let X_i be the indicator for student *i* picking his own sit and let $X = \sum_{i=1}^{n} X_i$ be the total number of students that sits on their own sit. By linearity of expectation,

$$E(X) = E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = 1$$

-		

2. Consider the function $T : \{0,1\}^n \to \mathbb{R}$. Given a random variable x, suppose you measure that $E(T(x)) = n^2$. What can you can conclude about $\sup_x T(x)$ and $\inf_x T(x)$?

Solution. $E(T(x)) = n^2$ implies that $\exists x \in \{0,1\}^n$ such that $T(x) \ge n^2$; therefore, $sup_x T(x) \ge n^2$. Similarly, $\exists x \in \{0,1\}^n$ such that $T(x) \le n^2$; therefore, $\inf_x (X) \le n^2$.